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Abstract. It is shown that there exist polynomial (or non-trivial) zeros for the 9-j  coefficient. 
A simple closed form expression for the polynomial zeros of degree one of the 9-j  coefficient 
is derived from the triple-sum series due to Jucys and Bandzaitis. Polynomial zeros of 
degree one of the 9-j  coefficient are generated from either this closed form expression or 
from a set of parametric solutions of the multiplicative Diophantine equations: xyz = uvw. 

1. Introduction 

Recently, systematic studies have been ma Ae of the polynomial or non-trivial zeros- 
in particular, zeros of degree one or weight one-of the 3-j  and the 6- j  coefficients, 
from the point of view of (i) the embedding of exceptional Lie algebras in orthogonal 
groups (Van der Jeugt et a1 1983, Vanden Berghe et a1 1984, De Meyer and Vanden 
Berghe 1984); (ii) formal binomial expansions (Srinivasa Rao and Rajeswari 1984); 
and (iii) multiplicative Diophantine equations (Brudno 1985, Brudno and Louck 1985, 
Bremner 1986, Bremner and Brudno 1986, Srinivasa Rao and Rajeswari 1986, Srinivasa 
Rao et a1 1988b). Here, we discuss for the first time the problem of polynomial zeros 
of the 9- j  coefficient. 

We have obtained a simple closed form expression for the polynomial zeros of 
degree one of the 9-j coefficient and generated them using it. We also generated the 
inequivalent polynomial zeros of degree one of the 9- j  coefficient from a set of 
parametric solutions to the homogeneous multiplicative Diophantine equations of 
degree three, namely xyz = uvw. However, unlike the single four-parameter solution 
of x1x2 = uluz which generated the complete set of degree-one zeros of the 3-j coefficient 
(Srinivasa Rao and Rajeswari 1984) and the single eight-parameter solution of x1x2x3 = 
u,u2u3 which generated the complete set of degree-one zeros of the 6-j  coefficient 
(Srinivasa Rao et a1 1988b), we find that a set of solutions of the equation xyz = uvw 
is necessary to generate the complete set of degree-one zeros of the 9- j  coefficient. 
This complex situation is a direct consequence of the fact that, while single-sum series 
representations have been obtained by Wigner and Racah for the 3-j  and the 6-j  
coefficients, the 9-j  coefficient is represented, at best, by a triple-sum series due to 
Jucys and Bandzaitis (1977) and Alisaukas and Jucys (1971). 

2. Mathematical formulae 

The simplest known algebraic form for the 9-j coefficient due to Jucys and Bandzaitis 
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(1977) is the triple-sum series: 

( x  1 - x )  ! ( x 2  + x )  ! ( x 3  + x) ! X + Y + Z  ( - 1 )  
x,y,z x , ! y ! z !  ( x 4 -  x ) !  ( x 5  - x ) !  

( Y l  + Y ) !  W + Y ) !  ( z l  - z ) ! ( z 2 + z ) !  
( y 3  + y ) !  ( y 4  - y )  ! ( y 5  - y ) !  ( 2 3  - z)! ( 2 4 -  z ) !  ( z 5  - z )  ! 

X 

where 

and 

( p l - y - z ) !  
( p 2 +  x + y ) !  ( p 3  + x + z)! 

X 

OG x s  min(-d + e +f, c +  f - i) = X F  
O s y s m i n ( g - h + i ,  b + e - h ) =  Y F  
Os z s min(a - b + c, a + d - g )  = ZF 

x l = 2 f  x 2 = d + e - f  x3  = c +  i - f 
x 4 = e + f - d  x 5 = c + f - i  y l  = -b+ e+  h 
y 2  = g +  h - i y3 = 2 h  + 1 y 4 =  b +  e -  h 

( 3 )  
y 5 = g - h + i  z l = 2 a  ~ 2 z - a  + b + c  
23 = a + d + g + 1 24= U + d - g  z5= U - b + c  
p l = a + d - h + i  p 2 =  -b+d  - f + h p3 = - a + b - f +  i 

and 
( a  + b+ c +  l ) !  

(abc )  = A( abc) 
( -a  + b + c)! ( 4 )  

with 
A ( u ~ c ) = [ ( - u +  b +  c ) ! ( u  - b+ c ) ! ( u  + b - c ) ! / ( u  + b+ C +  1 ) ! ] ' 1 2 .  

If we set c = 0, the triangular inequalities to be satisfied will lead to f = i and a = b, 
so that the expression for the 9-j coefficient can be shown to reduce to a single-sum 
series, which corresponds to a 6-j coefficient. The symmetries of the 9-j coefficient 
will then lead us to the well known special values of this coefficient (Biedenharn and 
Louck 1981): 

(I c 

O e e  f f 0  f b d  
f d b = c f a  d c e = O e e  [: i } = [ b  a 1 [f a 

b e  h+c+e+f 

( 5 )  
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In the wake of the non-trivial or polynomial zeros of the 6-j coefficient (see, for 
instance, Srinivasa Rao and Rajeswari 1985) and (5) above, it is obvious that every 
polynomial zero of the 6-j coefficient would imply a polynomial zero of the 9-j  
coefficient. The degree of the polynomial zero would be the same in both the cases. 
However, the 9-j coefficient is a special coefficient with one of the nine angular momenta 
in it being zero, and such zeros are not the focus of our attention here. 

Using the following notation for the Pochammer symbols: 
r(A + k )  

(A ,  k ) = - -  - A ( A  + 1)(A +2) . . . r(A 1 ( A  + k - 1) k z - 0  

equation (1) can be rewritten as 

r ( i + x i ,  i + x 2 , i + x 3 ,  i+Yi ,  i+Y2 ,  i f z i ,  i+22 ,  i f p i )  
r(i + ~ 4 , i  + x 5 , i  +Y3,i +Y4, 1 +Y5, 1 + z3, 1 +z4, 1 + z5, 1 f p 2 ,  1 f p 3 )  

X 

1 (1+x2, x)( l+x3,x)(-x4,x)(-x5,  x)  
(-XI, x)  X C -  

x,y,z x ! y ! z ! 

where 

The triple-sum series in (7) can now be identified with a triple hypergeometric 
series. To this end, consider the product of the following 4F3(l) ,  which are generalised 
hypergeometric functions (Slater 1966) of unit argument: 

'I 4 F 3 [  -xl  l + p 2  1 +p3 ]z3[ l + ~ 3  -pl 1 +p2 
l + y l  l + y 2  -y4 -y5; 1 + ~ 2  1 + ~ 3  -x4 - ~ 5 ;  

'I 1+z2 -23 -24 -z5; 
1 +p3 
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In equation (8), which represents the product of three independent series, making the 
following replacements 

(1 +P2, x ) ( l  +P2, Y )  by (lSP-2, X + Y )  

(1 +P3, x ) ( l  +P3,Z) by (1 +p3, x +  z )  (9: 

(-PI, Y)(-Pl, 2) by (-PI, Y + 2 )  

enables us to identify the triple series with that in (7). The product of the three 4F3(1) 
given in (8), with the replacements given in (9), lead us now to a new function in three 
variables, which can be written as 

(10) 
F i 3 1 [  1 +X2, 1 +X3, -X4, -X5; 1 + y l ,  1 + y 2 ,  -.V4, - y 5 ;  1 22, -23, -24, -25; 

- x l ;  l+y3; -Zl ;  l + p 2 , l + p 3 , - p l  

which is a particular case of an  extremely general hypergeometric series defined in 
three variables by Srivastava (1967), namely 

1 
( ( a ) ,  m + n + P ) ( ( b ) ,  m + n ) ( ( b r ) ,  n +P)((b’’) ,  p +  m )  

m,n,p ( ( e ) ,  m + n + p ) ( ( f ) ,  m + n ) ( ( f ’ ) ,  n +p)((f”),  P+ m )  = c  

where ( a )  denotes a sequence of parameters (in the notation of Srivastava (1967)), 
which is an  elegant unification of the triple hypergeometric functions of Lauricella 
(1893), Saran (1954) and  Srivastava (1964) functions (Exton 1976). We wish to point 
out that the new generalised hypergeometric function in three variables 
@ “ 3 ’ ( ~ k l ;  pi, y m ;  wk), defined by Wu (1973), is the same as F(3) discussed above. 

The triple-sum series (1) does not exhibit the 72 symmetries of the 9-j  coefficient. 
In the context of numerically evaluating the 9- j  coefficient using ( l ) ,  it has been shown 
(Srinivasa Rao et a1 1988a) that while the (extreme) example 

30 20 10 

{i: ;: 4 
has XF + YF + ZF = 0, its symmetries can have XF + YF + ZF = 60, 80, 100 or  140. 
Correspondingly, the number of terms to be summed in the triple-sum series ( l) ,  
reckoned after taking into account the constraints on the ranges of x, y and z placed 
by p l ,  p 2  and p3 (viz y + z ~ p l  and if p 2 , p 3 2 0 ,  then x + y a l p 2 / ,  z + x a l p 3 ) ) ,  for 
the given 9-j coefficient and  its symmetries can have 21, 41, 441, 1681, 9471, 18 081 or  
33 761 terms! This is due  to the inherent lack of symmetry of (1). On the basis of this 
observation, we can define the degree of the polynomial zero of the 9-j coefficient as 
that given by the minimum value of X F  + YF + ZF for one or more of its symmetries. 

It is to be noted that the conventional single sum over the product of three 6-j  
coefficients (given in, for example, Biedenharn and  Louck (1981)) will not reveal the 
polynomial zeros of the 9-j coefficient. However, the realisation that the triple-sum 
series in (1) can be looked upon as a generalised hypergeometric function in three 
variables, evaluated at unit values for all the variables, enables us to find the polynomial 
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zeros for the 9- j  coefficient. All the degree-one polynomial zeros of the 9- j  coefficient 
are then given by the simple closed form expression 

( 1 2 )  

( 1 3 )  

a l , X F , Y F , Z F  - $ o 2 , X F , Y F , Z F  - n 3 , X F , Y F , Z F  
1 - ~ P l , l , O , O  P2.0.1 ,o P 3,0,0,1 

where we have introduced the notation: 
abed= 

sp:q:r:s 8 a , p S b , q a c , r S d , r  

the S a , p ,  etc, being the Kronecker delta functions. In ( 1 2 ) ,  the a and p are given by 

a1 = ( x 2 + 1 ) ( x 3 + 1 ) x 4 x 5  p l  = x l (  p 2 +  1 ) (  p 3  + 1 )  

a 2  = ( y l +  l ) ( y 2 +  l ) y 4 y 5  p 2 =  ( y 3 + l ) p l ( p 2 +  1 )  ( 1 4 )  

a 3  = ( z 2 +  1)z3z4z5  p 3 = z l p l ( p 3 + 1 )  

and the quantities XF,  Y F  and Z F  are the upper limits of the summation indices x, 
y and z given by ( 2 ) .  

3. Multiplicative Diophantine equations 

In the study of the polynomial zeros of degree one of the 6- j  coefficient, we have 
shown (Srinivasa Rao et a1 1988b) that the complete set of zeros can be obtained only 
from the eight-parameter solution of the multiplicative Diophantine equation: xyz = 
uuw subject to the condition z = x + y  + U + u + w. We can also study the polynomial 
zeros of degree one of the 9-j  coefficient from the solutions of the homogeneous 
multiplicative Diophantine equations of degree three, namely xyz = uuw. Since ( 1 )  is 
a triple-sum series (and not a single-sum series as in the case of the 6- j  coefficient), 
the closed form expression ( 1 2 )  for the polynomial zeros of degree one contains four 
terms and this immediately suggests that the multiplicative Diophantine equations to 
be solved to generate the degree-one zeros are 

a l = p l  for X F = 1 ,  Y F = O , Z F = O  ( 1 5 )  
a 2  = p 2  for X F = O ,  Y F = l , Z F = O  

a 3  = p 3  for X F = O ,  Y F = O , Z F = l  

where the a and the p are products of three terms given in ( 1 4 ) .  Furthermore, from 
( 2 )  it is obvious that Y F  = 1 (say) could arise due to g - h + i = 1 and 6 + e  - h 1 ;  or 
b + e - h = l  and g - h + i z l ;  along with one of - d + e + f o r  c + f - i  being 0; and 
one of a - 6 + c or a + d - g being 0. There are therefore eight different cases which 
should be considered explicitly for each of the above three equations ( 1 5 ) ,  ( 1 6 )  and ( 1 7 ) .  

Following Bell (1933) ,  we have established (Srinivasa Rao et a1 1988c) that n2 
parameters are necessary and sufficient to obtain the complete set of solutions of the 
homogeneous multiplicative Diophantine equation of degree n :  

( 1 8 )  X I X * .  * . x ,  = u,u2 * . * U, n > l .  

For the sake of brevity, we discuss here the solutions for one of the three equations. 
In the case of Y F  = 1 ,  if we define n , ,  n 2 ,  n3 to be the products of the row elements 
of the required nine parameters arranged as a 3 x 3 array and n 4 ,  n 5 ,  n6 to be the 
products of the column elements of the same array, so that 

n,n2n3 = n4n5n6 
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then the solutions for the eight different cases can be grouped into two sets, (I) and 
(11), of four solutions each: 

a (-n1+ n4)/2 C 

f 
(-n,+ n3 + n4- 1 ) / 2  

[( n, - n3 + 2n, - 1 ) / 2 ]  - a 
(n2+ n3 - 1 ) / 2  

n1/2 
( n 4  - 2 ) / 2  

where 

a = ( n 2 -  n3+ n5-  n6) c = b - a  f = i - c  (19 )  

n6= n ,  c = b - a  f = d - e  (20)  

n6= n ,  n5 = n3 f = d - e  (21)  

(22 )  n5 = n3 c = i - f f = [ ( n ,  + n2+ n3 -2n,- 1 ) / 2 ]  - a. 
a ( -n l  + n3 + n4- 1 ) / 2  C 

- a ( n ,  + n3 - 1 ) / 2  
(n4 -2 ) /2  

where 

a = (n2+ n5-  n6-  1 ) / 2  c = b - a  f = i - c  

n6= n ,  c = b - a  f = d - e  

n6= n ,  n 5 = 1  f = d - e  

n5= 1 c = i -  f f = ( n , +  n2-  n3 -2n6+ I )  -aa. 

Of these eight solutions a laborious but straightforward examination reveals the 
following. 

(i) The expressions (19) and (23)  are genuine nine-parameter solutions, related by 
the symmetries of the 9-j coefficient and the interchange of n,  by n2.  

(ii) The conditions given in (20) ,  (21 ) ,  (24 )  and (25)  are inconsistent with the 
triangular inequalities. We will illustrate this for (25).  In this case g - h + i = 1 ,  
e + f - d = 0 ,  a + d - g = O  and hence [a 9 ;}=[ e:f b e ;I. 

a + e + f  a + e + f + i - 1  i 

From the triangular inequalities for (beh )  and (abc )  we have 

b + e - ( a  + e+ f + i - 1) 5 0 and a - b + c a O  

which together imply c - f - i+  1 5 0,  i.e. c = f + i or f + i - 1 only. Similarly, from the 
triangular inequalities for (beh )  and (cf;): 

b - a - f - i + l > O  and - c + f + i a O  

implying b - a - c + 1 a 0, i.e. b = a + c or a + c - 1 only. These restrictions on c and 
b lead us to the following four cases. 

( a )  c = f + i and b = a + c, which imply from (11): 

c =  [ ( - n l  -n3+n4+ 1 ) / 2 ] - a  and b=( -n , -n3+n4+1) /2 .  
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But from (11) we also have b = ( -n l  + n3+  n4- 1)/2. So, for both the expressions for 
b to be true, we require n3 = 1. The conditions given in (25) already require n ,  = n6 
and n5 = 1. These, together with n3 = 1 and the requirement n , n 2 n 3  = n4n5n6, imply 
n,  = n4. From (11), when n2 = n4,  i = 0. We have already stated that, when any one 
of the nine angular momenta is zero, the 9- j  coefficient reduces to a 6-j  coefficient as 
in (5) and the zeros of these special 9-j coefficients are a direct consequence of zeros 
of the 6-j coefficients; and we are not interested in these, since they may be considered 
as derived polynomial zeros of the 9-j coefficient. 

( b )  c =f+ i - 1 and b = a + c, which imply from (11): 

c = [ ( - n ,  - n,+ n4- 1)/2] - a  and b = ( - n ,  - n3+ n4- 1)/2. 

But from (11) we also have b = ( -n ,+n3+n4-1)/2.  For both these expressions of b 
to be true, we require n3 = 0. Since, by definition, each of the nine parameters in the 
solution for the multiplicative Diophantine equation take only positive non-zero integral 
values, we must have strictly n3 > 0. Thus this case yields no zeros of degree one. 

( c )  c = f +  i and b = a + c - 1 = a +f+ i - 1. The arguments for case ( b )  can be 
repeated and they lead to n 3 = 0 .  

( d )  c =f+ i - 1 and b = a + c - 1 = a +f+ i - 2, which imply from (11): 

c =  [ ( - n ,  - n 3 +  n4- 1)/2] - a and b = ( - n ,  - n3+ n4-3)/2. 

Also from (11): b = (-nl + n,+ n4- 1)/2. For both these expressions for b to be true, 
we require n3 = -1, which is forbidden. Thus (25) cannot yield any degree-one zeros 
of the 9- j  coefficient. 

(iii) The expressions (22) and (26) are solutions in terms of fewer (than nine) 
parameters and have one of the angular momenta itself as a free parameter. 

Similar results can be obtained for (15) and (17) with the exception that (15) does 
not yield a full nine-parameter solution. To sum up, we find that of the 24 cases 
studied, twelve did not yield any degree-one zeros because of inherent inconsistencies 
and of the remaining twelve studied, only four (two from (16) and two from (17)) are 
full nine-parameter solutions, the other eight being fewer (than nine) parameter 
solutions having one of the angular momenta itself as a free parameter. 

4. Results and discussion 

Polynomial zeros of degree one of the 9- j  coefficient were generated on an IBM-PC/AT 
computer using the closed form expression (12) and the set of twelve solutions of 
multiplicative Diophantine equations discussed above. Using (12), the polynomial 
zeros of degree one for all non-zero arguments of the 9-j coefficient that arise when 
0 < a, b, d, e 4 2 ,  were listed on the computer. In this restricted range for the arguments 
we found 447 polynomial zeros of degree one of the 9-j coefficient. The first twenty 
of these are given in table 1. Also, this range of arguments contained only three 
polynomial zeros of degree one of the 6-j coefficient, namely 

2 2 2  3 2 2  4 ”  I$ $ $}  11  2 21 12  ; ;I 
and ( 5 )  gives us all the corresponding polynomial zeros of degree one of the 9- j  
coefficient. 
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Table 1. The first 20 polynomial zeros of degree one of the 9-j coefficient, with U =  

a + b + c + d + e + f + g + h + i g i v e n i n  thelast column. 

a b C d e f g h i U 

0.5 1 .o 1.5 1 .o 1.5 1.5 1.5 2.5 2.0 13+ 
0.5 1 .o 1.5 1.0 2.0 3.0 1.5 3.0 3.5 17 
0.5 1 .o 1.5 1.5 0.5 2.0 2.0 1.5 1.5 121 
0.5 1.0 1.5 1.5 2.0 1.5 2.0 3.0 2.0 151 
0.5 1 .o 1.5 1.5 2.5 3.0 2.0 3.5 3.5 19 
0.5 1 .o 1.5 2.0 1 .o 2.0 2.5 2.0 1.5 14 
0.5 1.0 1.5 2.0 2.5 1.5 2.5 3.5 2.0 17; 
0.5 1 .o 1.5 2.5 1.5 2.0 3.0 2.5 1.5 16 
0.5 1.5 1 .o 1.0 1.5 1.5 1.5 2.0 2.5 13: 
0.5 1.5 1 .o 1.5 1.5 2.0 2.0 2.0 3.0 151 
0.5 1.5 1 .o 1.5 2.0 1.5 1.0 2.5 1.5 131 
0.5 1.5 1 .o 2.0 1.5 1.5 1.5 2.0 0.5 12+ 
0.5 1.5 1 .o 2.0 1.5 2.5 2.5 2.0 3.5 17'i 
0.5 1.5 1 .o 2.5 1.5 3.0 3.0 2.0 4.0 19 
0.5 1.5 2.0 1 .o 0.5 1.5 1.5 2.0 1.5 12 t  
0.5 1.5 2.0 1 .o 2.0 2.0 1.5 3.5 3.0 17 
0.5 1.5 2.0 1.5 1 .o 1.5 2.0 2.5 1.5 14 
0.5 1.5 2.0 1.5 2.5 2.0 2.0 4.0 3.0 19 
0.5 1.5 2.0 2.0 1.5 1.5 2.5 3.0 1.5 16 
0.5 1.5 2.0 2.5 0.5 3.0 3.0 2.0 2.0 17 

1 These are equivalent ones for a given value of U. 

In table 2 are listed the first few inequivalent polynomial zeros of degree one, for 
12 s (+ s 18. These were generated from the twelve solutions of the multiplicative 
Diophantine equations discussed earlier in 0 3. After generating the polynomial zeros, 
the results were further analysed with the help of a program by which the inequivalent 
9-j coefficients were isolated (by dropping the equivalent ones, which are symmetries 
of the listed one). The significant point to be noted is that the nine-parameter solutions 
do not generate all these listed zeros. This is obvious by looking at (12), since the 
nine-parameter solutions are from (16) for (17) giving rise to the third or the fourth 
term of (12) being equal to 1. So, the set of twelve solutions of the multiplicative 
Diophantine equations is necessary to generate all the polynomial zeros of degree one 
of the 9- j  coefficient. A scan of the tables of 9- j  coefficients (Jahn and Howell 1959) 
reveals a listing of 67 polynomial zeros and of these, 60 are zeros of degree one. Table 
2 lists all the inequivalent zeros of degree one for u s  18. 

Finally, while the closed form expressions, or the solutions of single multiplicative 
Diophantine equations, generate all the polynomial zeros of degree one of the 3- j  and 
the 6-j  coefficients, all the polynomial zeros of degree one of the 9- j  coefficient arise 
from either the closed form expression (12) or a set of solutions of multiplicative 
Diophantine equations (and there exists no single solution which will generate them 
all). Therefore, the generation of all the polynomial zeros of degree one of the 9- j  
coefficient from the closed form expression (12) is straightforward, simpler and eco- 
nomical. These polynomial zeros imply that certain specific reduced matrix elements 
of the tensor product of two irreducible tensors taken between certain specific well 
defined angular momentum states (de Shalit and Talmi 1963) are zero. It is necessary 
to investigate the physical significance of these vanishing matrix elements in quantum- 
mechanical studies. 
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Table 2. All the inequivalent polynomial zeros of degree one  of the 9 - j  coefficient for 
U S  18. The last three columns represent which of the 12 solutions of the multiplicative 
Diophantine equations give rise t o  the entries in this table. Column P represents the four 
nine-parameter solutions, column Q the  four solutions of (15) a n d  column R represents 
the remaining four solutions. Y stands for yes and  N for no. 

a b c d e f g h i  u x y z P Q R  

2.0 1.5 0.5 1.5 0.5 1.0 1.5 2.0 1.5 12 0 0 1 Y Y Y 
1.5 2.5 1.0 1.0 1.5 0.5 1.5 2.0 1.5 13 0 1 0 Y Y Y 
2.0 2.5 0.5 2.0 1.5 1.5 1.0 2.0 1.0 14 1 0 0 Y Y Y 
2.0 1.5 0.5 1.5 1.0 1.5 1.5 2.5 2.0 14 0 0 1 Y Y Y 
2.0 3.0 1.0 2.0 0.5 1.5 1.5 2.0 1.5 15 0 1 0 Y Y Y 
2.5 3.0 0.5 2.0 1.5 1.5 1.5 2.5 1.0 16 1 0 0 Y Y Y 
2.0 3.0 1.0 2.0 1.5 1.5 1.0 2.5 1.5 16 1 0 0 N Y Y 
2.0 2.5 0.5 1.5 1.5 2.0 1.5 3.0 1.5 16 1 0 0 Y Y Y 
2.0 1.5 0.5 2.5 1.0 1.5 2.5 2.5 2.5 16 0 0 1 Y Y Y 
3.0 2.5 0.5 2.0 0.5 1.5 2.0 3.0 2.0 17 0 0 1 Y Y Y 
3.0 2.0 1.0 1.5 1.0 0.5 3.5 3.0 1.5 17 0 0 1 Y Y Y 
2.5 2.0 1.5 1.0 0.5 1.5 3.5 2.5 2.0 17 1 0 0 Y Y Y 
2.0 2.0 1.0 2.0 1.5 0.5 3.0 3.5 1.5 17 0 0 1 Y Y Y 
2.0 1.5 1.5 1.5 1.5 1.0 3.5 2.0 2.5 17 0 1 0 N Y Y 
3.0 2.5 0.5 2.0 1.0 1.0 3.0 3.5 1.5 18 0 0 1 Y Y Y 
2.5 3.5 0.5 1.5 2.0 1.5 2.0 3.0 2.0 18 0 1 0 Y N N 
2.5 3.0 0.5 1.5 1.5 2.0 2.0 3.5 1.5 18 1 0 0 Y Y Y 
2.0 3.0 2.0 1.5 0.5 1.0 1.5 3.5 3.0 18 0 0 1 Y Y Y 
2.0 3.0 1.0 1.5 1.5 2.0 1.5 3.5 2.0 18 1 0 0 N Y Y 
2.0 2.5 1.5 1.5 1.0 1.5 1.5 3.5 3.0 18 0 0 1 N Y Y 
2.0 2.5 0.5 2.5 2.5 2.0 1.5 3.0 1.5 18 1 0 0 N Y Y 
2.0 2.5 0.5 1.5 2.5 2.0 1.5 3.0 2.5 18 0 1 0 Y N N 
2.0 2.0 1.0 2.5 1.0 1.5 2.5 3.5 2.5 18 0 0 1 Y Y Y 
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